The term “microgrid” may conjure up images of self-sufficient military bases and remote outposts, generating and consuming power without any connections to the larger electricity grid. After all, backup generators that support multiple buildings — the bare-bones definition of a microgrid — are already a mainstay of hospitals, refineries, data centers, semiconductor plants and other institutions that can’t afford to let the power go down, even for a second. Such stand-alone microgrids now add up to about 450 megawatts of commercial and industrial capacity, and another 322 megawatts in the campus and institutional sector, in the U.S., according to Pike Research.
But utilities, as well as their customers and partners, are increasingly looking past microgrids’ ability to “island” themselves to protect from broader power outages, and are seeking out ways they can use their on-site distributed power generation, and demand reduction and management systems to help the grid at large. Theoretically, these types of microgrids could help the outside grid keep its own power quality stable, helping entire neighborhoods ride through disruptions. And at the end of the road, microgrids could sell their generation and demand reduction back to the utilities they usually buy power from, giving would-be microgrid operators a whole new set of financial incentives to help bolster their business cases.
Read More about Microgrids: Building Blocks of the Smart Grid